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Abstract
Recently, with the rapid development of digital technologies and its wide application, 3D
model retrieval is becoming more and more important in graphic communities. In this task,
how to effectively represent the 3D model and how to robustly measure similarity between
pair-wise models are two crucial problems. In previous work, most papers dedicated to
researching how to effectively using the visualize features to represent 3D model and using
the visual information to measure the similarity. However, visual feature can not represent
3D model well because of the model variations in poses and illumination. To address this
task, we propose an novel framework, which utilizes the visual and contextual information
to construct the rank graphs and fuses these two graphs to enhance the similarity measure.
When fusing visual and contextual information, we define four strategies to measure the
similarity among models according to the relation between the query model and the gallery
models. The extensive experimental results demonstrate the superiority of our proposed
method compare against the state of the arts.

Keywords View-based model retrieval · Contextual information · Similarity measure

� Tong Hao
joyht2001@163.com

Wenhui Li
liwenhui@tju.edu.cn

Yuting Su
ytsu@tju.edu.cn

Zhenlan Zhao
zhenlantju@gmail.com

Yangyang Li
liyangyang@cetc.com.cn

1 School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2 Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Science,

Tianjin Normal University, Tianjin 300387, China
3 National Engineering Laboratory for Public Safety Risk Perception and Control by Big Data

(PSRPC), CAEIT, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-08967-7&domain=pdf
mailto: joyht2001@163.com
mailto: liwenhui@tju.edu.cn
mailto: ytsu@tju.edu.cn
mailto: zhenlantju@gmail.com
mailto: liyangyang@cetc.com.cn


Multimedia Tools and Applications

1 Introduction

In recent years, with the development of computing systems and computing power, 3D
model retrieval has received a lot of attentions [10, 19, 20] on various domains such as
architectural design, computer-aided design, printing and digital entertainment. These appli-
cations have resulted in huge 3D model data. Therefore, how to design an data-driven
method to represent 3D models [11, 27, 28] and how to effectively measure the similarity
between two models [5, 6, 19] has become a crucial issue. The task of 3D model retrieval
is that finding the similar 3D models from the existing dataset with the query 3D model.
The existing methodologies can be grouped into two classes, model-based methods, which
utilize and explore spatial information to represent 3D model and view-based methods,
which translate 3D model into multiple views. Various methods developed novel shape
descriptors [1, 12, 15, 26, 32, 35] to represent 3D models by using different types of spatial
information, such as volumetric, polygonal mesh, point cloud and so on. However, it cannot
always get 3D models in many applications. So it is necessary to reconstruct 3D models based
on a carefully collected group of 2D views. Whereas, the reconstruction is computationally
expensive and the sampling of the images needs to be fine-grained enough to reconstruct a
reasonably good 3-D model, which is difficult to realize [7]. All these difficulties severely
constrain the practical applications of model-based 3-D model retrieval methods.

The existing works show that view-based methods usually outperform model-based
methods in term of retrieval accuracy. The view-based methods obtain multiple views by
rending the 3D models and utilize the mature algorithms of 2D image to represent 3D model.
The view-based methods have become a prevalent research direction in recent years because
of the superior performance. The view-based methods can be divided into two classes with
whether using the label information of 3D models. For supervised methods, a lot of works
[4, 37] utilize the deep neural network to model the relation between multiple views of 3D
models, which need huge human annotations. Because of the limitation of the label require-
ment, many researches [5, 6] focus on how to retrieval 3D models in unsupervised manner.
which shows the promising performance.

However, as far as we know, the existing problems of most view-based retrieval methods
are that they learn the discriminative representation of 3D model or construct the similarity
graph by only using the multiple visual features, which cannot always get good performance
because of the diversity of 3D models. In this paper, we propose an integrating contextual
information with similarity measure method to solve the model retrieval task, which joint
visual information and contextual information between query model and gallery models to
measure the similarity. When processing the similarity, four- stages measure is designed to
enhance the similarity measure among models. Our pipeline is summarized in Fig. 1. As
shown in Fig. 1, our framework joints visual and contextual information to conduct two
rank graphs, where the models are the nodes and the similarities are the edge weights. Sub-
sequently, the similarity information and the disparity information are combined together
to divide the gallery into four parts, which can separate the similar samples and dissimilar
samples. Finally, we re-rank the similarities of four stages and get the final retrieval result.

The main contributions of this paper are followed as:

– We develop a novel 3D retrieval method, which can combine the visual information of
the model and the contextual information of the model corresponding to other models
to explore more plentiful information to improve the robustness of similarity measure.

– We define four strategies to measure the similarity among models according to the
relation between the query model and the gallery models. The stages can make the
similar models close to each other and make the dissimilar models far from each other.
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Fig. 1 The flowchart of our proposed method. Our method consists two key parts, graph generation and graph
fusion. In the graph generation, we utilize visual similarity and contextual similarity to construct two graphs,
respectively. In the graph fusion, we firstly split the rank graph into four parts by considering the overlap
information between two graphs. Then, we define four similarity measure strategies with respect to the four
parts to re-calculate the similarity. Finally, we obtain the final retrieval result by ranking the similarity

– Extensive experiments are conducted on ETH, MVRED and NTU datasets. The experi-
mental results and the parameter analysis confirm the effectiveness and efficiency of our
method.

The rest of our paper is organized as follows. In Section 2, some related work regarding
the representative methods of 3D model retrieval from both model-based and view-based are
introduced. Section 3 describes our rank graph generation and rank graph fusion. Section 4
mainly introduce our experimental parameter settings and the results. In Section 5, we make
a summary of our paper.

2 Related work

The existing 3D model retrieval methods can be classed into model-based methods and
view-based methods.

Model-based methods These methods take a dominant place in early application. The
premise of model-based retrieval method is to be accessible to obtain the 3D model of
each object and generate the 3D descriptor features, then the recognition algorithms based
on the 3D descriptor features can be directly trained. Popular 3D features include geo-
metric moments [32],surface distributions [22], shape descriptors [26], etc. Because of
the construction of large-scale 3D model databases like TurboSquid, Shapeways and 3D
Warehouse, building the specific classifiers of 3D models from 3D representative descrip-
tors directly became possible and easier. Besides, a variety of distance measure metrics
have been introduced to access the resemblance among model descriptors. For example,
Euclidean distance is a straight-line distance between two descriptors in Euclidean space.
In addition, there are other distance measure, such as the Hausdorff distance [8], Cosine
distance and Earth Movers distance [33]. Similarity search that adopted quadratic forms
was supported efficiently by a common filter-refinement architecture for query process-
ing, and the architecture was employed to guarantee the particular flexibility. Cheuk et al.
[14] described a new method that utilized shape distributions to compare among solid 3D
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model. The shape distribution metrics was developed by the growing application to approx-
imate model comparison such as polygonal meshes and Virtual Reality Modeling Language
(VRML) models and this method focused on adapting these metrics. In [35], a generic
Fourier Descriptor(GFD) was proposed for model retrieval, which overcame the drawbacks
of existing model descriptors with non-robust feature and poor generalization performance.
Comparing Multiple Resolution Reeb Graphs between polyhedral models was proposed
in [12], where a rough-to-detailed strategy is adopted to calculate the resemblance between
3D models and maintains the consistency of the graph structures at the same time. Fang et al.
[34] developed techniques to train a deep CNN with the guide of both extracting concise
and geometrically informative shape descriptor and redefining existing descriptors.

View-basedmethods Inspired by the superior performance, the view-based methods have
attracted rising attention in recent years. Generally speaking, the key modules of this
type retrieval algorithms lie in two main aspects: feature representation and similarity
measurement. Chen et al. [3] introduced the Light Field Descriptor(LFD) to extract the rep-
resentative feature based on the concept that if two models are similar, they should have
similar appearance from all angles. In order to capture the views of all angels, an array
of cameras were replaced on the vertices of the dodecahedron over a hemisphere. Each
set of LFD is defined by ten views. Then the matched result- s are encode by Zernike
moments [16] and Fourier descriptors to improve its robustness against rotations, transla-
tions and noise. Method proposed by [25] brought about a novel deep network with multiple
layers. The input of the network were multiple views rendered from a 3D model, which
would be combined into a compact single view. Then the feature learning model was gen-
erated by training the network with compact views. The Euclidean distance was leveraged
as the metric criterion to calculate the similarity among models. AVC [2] is a typical view
selection method that leveraged the statistical model distribution scores plus a probabilistic
Bayesian information criteria to cluster representative views. Furthermore, Giorgi et al. [9]
proposed an approach to select the best view of the view pool by utilizing geometrical char-
acteristics. The single 2D view is semantically grounded. Combining with the invariant and
informative shape descriptor, the method could refine the intra-information and had a higher
potential for 3D retrieval. Gao et al. [6] propose a 3D model retrieval algorithm, which
releases the camera constraint.

Besides learning discriminative representation, finding a proper way to estimate the sim-
ilarity between the query model and all candidate models also has a huge impact on the
performance of the retrieval method. Nie et al. [30] applied clustering to select exemplar
views and then, they leveraged the weighted locality-constrained group sparse coding for
similarity measure. Different from traditional similarity estimation method where the dis-
tances of view pairs across the two models are integrated, Wang et al. [29] introduced a
discriminative probabilistic modeling method. The GMMs of each model was acquired by
modeling and the distance between two models was reckoned according to the Kullback-
Leibler (KL) divergence. Zhao et al. [36] managed to apply a feature fusion method based
on multi-modal graph learning to view-based 3D model retrieval. Each view is described
by several visual features and the Hausdorff distance of models are calculated with multiple
views. Hong et.al [13] adopted multi-view ensemble manifold regularization (MEMR) to
merge multi-view data by constructing the hyper-graph. The graph matching method pro-
posed by [24] acted as a criterion to compute the distance between two sets of views. The
graph matching method can help preserve local and global structure. Liu et al. [19] pro-
posed the multi-modal clique graph to solve the 3D model retrieval. They utilized the clique
graph to represent the 3D model and measuring the similarity by clique graph matching. In
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[31], a boosting multi-model graph learning based method was introduced. The boost was
caused by the investigation into the difference of the semantic and discriminative abilities
among views, which enhanced the similarity measure.

3 Proposedmethod

In the proposed method, our goal is to design two rank graphs by using the visual and
contextual information of the query model to enhance the similarity measure. To achieve
this, we exploit the contextual information with the neighbor information of the query model
because of the effective context information in the neighbor set. As shown in the framework
Fig. 1, our frame- work mainly contains two modules: graph generation and graph fusion.
We will detail these two modules in the following subsection.

3.1 Graph generation

For view-based method, each 3D model is translated into a group of view images. Given
N models with S views, we use the pre-trained deep model to extract the features for one
model. We define the feature of model i by fi , where fi = {v1, v2, ..., vS} and vj ∈ R

D is
the feature for view j , j ∈ [1, S]. According to the features, we can measure the similarity
between two models. We use the model as the node of the graph and the similarity between
them as the edge of two nodes. In this subsection, we define two methods to measure the
similarity. The first method uses set distance as the similarity measure and the other method
uses neighbor distance as the similarity measure.

Visual graph We use the set distance as the similarity to construct the visual graph. To
simplify the computation of multiple views, we mean the features of multiple views and use
the average feature as the model representation. We adopt Euclidean distance between two
average features as the similarity, which is defined as following:

SimV (x1, x2) = D(
1

|V1|
|V1|∑

i=1

vi,
1

|V2|
|V2|∑

j=1

vj ), (1)

where SimV (x1, x2) represents the similar between model x1 and x2. |V1| and |V2| represent
the view number of model x1 and x2, respectively. After getting the similarity SimV (i, ·)
between the query model i and the gallery models, we can rank the similarity and get the
visual graph RV (i, ·).
Contextual graph Unlike directly using set distance to construct the visual graph, we uti-
lize the neighbor information to construct the contextual graph to improve the robustness
of similarity measure. As one model contains multiple views, we firstly fuse the multi-
ple features of each model and obtain the unified representation for each model. Then, we
compute the Euclidean distance between models and obtain the ranked neighbors according
to the distance. If model x1 is similar to model x2, their neighbors should also be similar
to each other. Therefore, we utilize the neighbor information of one model as the model
representation by meaning the features of top-k neighbor models, which can improve the
robustness of similarity measure. The similarity measure is defined as following:

SimC (x1, x2) = D( 1
k
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, 1
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k∑
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where SimC (x1, x2) represents the similarity between model x1 and x2 with the neighbor
information. Nx1 is the similar neighbor set of model x1 and Nk

x1
denotes the top-k neighbor

set. Nx2 is the similar neighbor set of model x2 and Nk
x2

denotes the top-k neighbor set. ui
x1

is one neighbor model from the set Nk
x1

and ui
x2

is one neighbor model from the set Nk
x2

.
Similar to the visual graph, we utilize the similarity SimC (i, ·) computed by Eq. 2 to obtain
the contextual graph RC(i, ·).

3.2 Graph fusion

After the rank generation, we can obtain the visual graph RV and contextual graph RC .
In this subsection, we introduce how to fuse these two graphs. We denote N

k+
V , N

k+
C as

the top-k neighbors in RV and RC , and N
k−
V , N

k−
C as the bottom-k neighbors respectively.

Then, we utilize the relation between these two sets to fuse the two graph information.
By exploring the importance of the neighbor samples, we can divide the gallery models
into four parts: strongly similar models, quasi similar models, potential similar models and
dissimilar models. We detail each part as following:

Strongly similar models After we get the two top-k neighbor set N
k+
V , N

k+
C , we can utilize

the relation between these two sets to decide which part the gallery model belongs to. N
k+
V

and N
k+
C are conducted by using different information, so if the same model appears in two

sets of query model, it means that this model is strongly similar to the query model. We
define the strongly similar model set SS+(q) for query model q as following:

SS+(q) = N
k+
V (q) ∩ N

k+
C (q) (3)

Quasi similar models The N
k+
V and N

k+
C can not always be completely overlap because of

the variation of models. Beside the overlapping samples, there are several unique models in
this two sets. We denote the models in the unique sample set of model q as the quasi-similar
models QS+(q), which is defined as following:

QS+(q) = N
k+
V (q) ∪ N

k+
C (q) − SS+(q) (4)

Dissimilar models For the bottom-k models N
k−
V (q) and N

k−
C (q) of the query model q,

they are the most dissimilar models to q. We define the union of N
k−
V (q) and N

k−
C (q) as the

dissimilar models for query model q:

Potential similarmodels When the models are out of the N
k+
V (q) and N

k+
C (q), we consider

that the models are not so similar to the query model q. We denote these models as potential
similar models PS(q):

PS(q) = N(q) − N
k+
V (q) ∪ N

k+
C (q) − DS(q) (5)

where N(q) denotes the rank neighbor set of the query model q. After dividing the gallery
samples into different parts, we can re-calculate the distance between the query model and the
gallery model by using the different strategies, which can enhance the similarity measure.

When we measure the similarity between model q and model g, we use the rank index
as the distance between two models. We denote the I (q,NV (g)) and I (q,NC(g)) as the
index of model q in neighbor set NV (g) of model g and the index of model q in neighbor set
NC(g) of model g, respectively. As the index of model q in NV (g) might be different to the



Multimedia Tools and Applications

index of model g in NV (q), we combine the I (q,NV (g)) and I (g, NV (q)) to represent the
similarity between the model q and g. Considering the visual and contextual graph, we can
obtain four indexes, I (q,NV (g)), I (q,NC(g)), I (g,NV (q)) and I (g, NC(q)) to robustly
measure the similarity. According to the graph generation, we can define four similarity
strategies as following:

DSS(q, g) = min(I (q,NV (g)), I (q,NC(g)), I (g, NV (q)), I (g,NC(q))) (6)

DQS(q, g) = min(I (q,NV (g)), I (g,NV (q))) + min(I (q,NC(g))I (g,NC(q))

2
(7)

DDS(q, g) = 4 × max(I (q,NV (g)), I (q,NC(g)), I (g,NV (q)), I (g, NC(q))

2
(8)

DPS(q, g) = I (q,NV (g)) + I (q,NC(g)) + I (g, NV (q)) + I (g,NC(q))

2
(9)

where DSS(q, g) denotes the similarity between model q and model g when g belong to
the strongly similar sets of q. The DQS(q, g) denotes the similarity between model q and
model g when g belong to the quasi similar sets of q. The DPS(q, g) denotes the sim-
ilarity between model q and model g when g belong to the potential similar sets of q

and DDS(q, g) denotes the similarity between model q and model g when g belongs to
the dissimilar sets of q. Obviously, we can find the four similarities satisfy the condition,
DSS(q, g) ≤ DQS(q, g) ≤ DOS(q, g) ≤ DDS(q, g), which is suitable for similarity mea-
sure. Then, we use the D(q, g) as the final similarity and rank the similarities between
model q and all models in gallery set to get the retrieval list. The proposed algorithm is
shown in Algorithm 1.
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4 Experiment

In this section, we explore several experiments on ETH, MVRED and NTU datasets (Fig. 2)
to demonstrate the superiority of the proposed method. For view representation, we feed
the views into the AlexNet network [17] which was pre-trained on the ImageNet dataset,
and utilize the output of the last second fully connected layer as the visual feature of views.
Finally, each view of 3D model is represented by a 4096-dimension vector (Fig. 2).

4.1 Dataset

– ETH [18]: The ETH database is composed of eight categories that contains 80 objects
in total. Each object contains 41 dissimilar views equally distributed over the upper
viewing hemisphere, the way that all cameras are placed is directed by subdividing the
faces of an octahedron to the third recursion level. In this database, all views will be
utilized as both the images in database and the image for querying.

– MV-RED [21]: The MV-RED contains 505 objects being classified to 60 categories. For
each object, it was rendered into 2D view images by three cameras from three different
locations. In order to acquire the 2D data of 3D models, the table controlled by a step
motor would be rotated uniformly so that the Camera-45 and the Camera-60 could
capture 36 RGB view images every 10 degree. Additionally, Camera-90 would capture
a single RGB image in the top-down view. Thus, each object has 73 view images in
total.

– NTU [3]: The unprecedented development of the Internet facilitate the sharing and
accessing of all kinds of information. The NTU database consists of 549 object from
47 categories, which are all free downloaded from the Internet. All 3D objects are
transformed into Wavefront file format and saved as Obj document format. Each 3D
object contains 60 sample images captured from different views.

4.2 Evaluation criteria

For the evaluation on each dataset, each 3D model is selected as the query once for retrieval.
To evaluate the 3D model retrieval performance, the following popular criteria are employed
as the measures of the retrieval performance.

– Nearest Neighbor (NN): NN is used to assess the performance of the nearest neighbor
result.

(a) (b) (c)

Fig. 2 View examples from three datasets. a ETH, b MVRED and c NTU
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– First Tier (FT): Given the specific query, the retrieval process will return a group of
results in order from relevant to irrelevant. Defining κ as the number of most related
results of the query, First Tier (FT) is a criterion utilized to calculate the recall of the
top κ results.

– Second Tier (ST) is defined as the recall of the top 2κ results.
– F-measure: F-measure is defined to jointly evaluate the PR values (precision and

recall) of top relevant results. For each query, it takes the top 20 returned results into
consideration.

– Discounted Cumulative Gain (DCG) [2]: DCG measures the importance of different
positions where relevant results appear. This method assigns relevant results at the top
ranking positions with higher weights.

– Average Normalized Modified Retrieval (ANMRR) [23]: ANMRR is defined to access
the ranking performance by considering the ranking order. Additionally, in order to
measure the retrieval result, the ranking information of relevant models among all the
returned retrieved models is used. In contrast to the other criterion, the lower ANMRR
value is, the performance is better.

4.3 Comparison against the state-of-the-art methods

In this section, we compare our approach with six methods, NN [7], HAUS [7], AVC [2],
CCFV [6], WBGM [5] ,MCG [19]. For our approach, we develop three settings, visual
graph(w/o RC), contextual graph(w/o RV ) and two graphs fusion(RC+RV ). The experimen-
tal results under different evaluation criteria are show in Fig. 3. According to the results, we
have several pivotal observations:

– On ETH dataset, which is shown in Fig. 3a, using the two type information obtains
the best results. Specifically, our method outperforms the competing methods by 2.5%-
16.3% under NN criteria (except MCG), 3.9%-23.9% under FT criteria, 1.5%-14.5%
under ST criteria, 1.2%-9.4% under F-measure criteria, 3.1%-23.1% under DCG cri-
teria and observe the decline of 3.2%-22.0% under ANMRR criteria, respectively.
Comparing to the MCG methods on NN criteria, our method get same performance.
While on other criteria, our method outperforms MCG by 5.6%, 1.5%, 1,2%, 5.5%,
5.1% with the respect to other five criteria. When only using the single visual infor-
mation RV , we get 93.5%, 70.0%, 80.9%, 60.9%, 81.0%, 18.0 % under six evaluation
criteria, which still outperforms AVC by 12.3%, 19.1%, 11.9%, 7.1%, 17.3%, 17.4%.
When using the contextual information to generate rank graph RC, the performance is
increased by 17.5%, 10.0%, 2.2%, 0.8%, 1.65%, 0.50% under NN, FT, ST, F-measure,
DCG and ANMRR which demonstrates the contextual information enhance the similar-
ity measure. Comparing to the contextual information RC, the performance with fusing
visual and contextual information is increased by 2.3%, 3.8%, 2.4%, 2.3%, 4.1%, 4.1%,
in terms of NN, FT, ST, F-measure, DCG and ANMRR, which confirms the superiority
of our four-stages similarity measure.

– On MVRED dataset, which is shown in Fig. 3b, our method outperforms the com-
peting methods by 1.0%-28.4%, 1.8%-20.5%, 1.2%-21.2%, 3.3%-19.3%, 1.6%-24.4%,
1.7%-21.0% with respect to the six evaluation criteria, respectively. When using the
contextual information RC , it outperforms the RV by 1.8%, 4.1%, 2.3%, 5.8%, 3.2%,
4.4% with respect to the NN, FT, ST, F-measure, DCG and ANMRR, which shows the
superiority of contextual information comparing to visual information. When we fuse
the two types information, the experiment of RC + RV outperforms RC by 5.0%, 2.3%,
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(c)

Fig. 3 Performance with different methods on (a) ETH, (b) MVRED and (c) NTU

3.1%, 3.2%, 2.5%, 1.4% in terms of six evaluation criteria, which demonstrates the
effectiveness of proposed fusion strategy.

– On NTU dataset, which is shown in Fig. 3c, we can get similar performance com-
paring to the ETH and MVRED dataset. Our methods outperform all the competing
methods, Specifically, we outperform them by 1.8%-40.4%, 1.2%-21.3%, 2.0%-23.3%,
0.2%-16.1%, 0.6%-27.2% and 0.8%-21.8% under the NN, FT, ST, F-measure, DCG
and ANMRR, respectively. When using contextual information to generate graph, our
RC outperforms RV by 8.1%, 5.1%, 4.4%, 2.4%, 4.9%, 6.4% under six criteria. The
performance is improved by fusing these two information. Our RC + RV outperforms
RC by 4.7%, 1.6%, 3.2%, 0.7%, 1.8%, 1.4% in terms of six evaluation criteria, which
demonstrates superiority of the fusion strategy again.

4.4 Performance with different view number

As the limitation in real application, we cannot always get as many views as we need to
represent 3D models. To study the impact of view number, we give an empirical analysis on
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Fig. 4 Performance comparison with different view numbers on MVRED. a NN, b FT, c ST, d F-Measure,
e DCG, f ANMRR

MVRED dataset. The experimental results with changing the view number under six eval-
uation criteria are shown in Fig. 4. Following the setting, we change the view number from
10 to 70 with the interval of 10. From the results, we can get the following observations:

– The performance is increased with adding more views. Intuitively, the 3D model with
more views will get richer sample representation. The discriminative representation
enhances the performance. As the Fig. 4 shown, the performance of all methods is
improved with increasing the view number.

– Our method gets best performance with all view number settings in terms of all evalu-
ation criteria. Specifically, when the view number is set to 70, our method outperforms
the second best method(MCG) by 0.3%, 2.4%, 2.3%, 4.4%, 2.1% and 2.4% under the
NN, FT, ST, F-measure, DCG and ANMRR evaluation criteria. When we set the view
number to 10, our method outperforms the MCG methods by 3.6%, 4.3%, 5.5%, 4.7%,
3.2%, 4.8%, which demonstrates the superiority of our method.

– Even using little views, our method can still obtain better results than other competing
methods. For example, our method with 50 views outperforms WBGM with 70 views
by 4.0%, 1.3%, 0.2%, 3.0%, 2.4%, 1.7% under six evaluation criteria.

4.5 Performance with different neighbor number

In this subsection, we explore the influence of the neighbor samples on three datasets. As
shown in Fig. 5, the neighbor number is varied from 5 to 30 with the step size of 5. From
the Figs. 5a, b and c, we can find that the increasing the neighbor number can improve the
performance on all the datasets. With more neighbor number, the more contextual informa-
tion is used during the process of similarity measure. Therefor, the performance is increased
with increasing neighbor number. If the neighbor number is bigger than the optimal one, the
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Fig. 5 Performance comparison with different neighbor numbers on (a) ETH, (b) MVRED and (c) NTU

performance is decreased because there exist more noise samples when using the neighbor
information. Moreover, when the number of neighbor samples is bigger or smaller than the
optimal value, the small change in performance proves the robustness of our method to this
value. The best results are achieved by setting the neighbor number k to 10, 20 and 20 for
ETH, MVRED and NTU dataset, respectively.

5 Conclusion

In this paper, we proposed a novel method to address the problem of rankling list optimiza-
tion by incorporating the graph generation and the graph fusion via the investigation on the
relation between models. In graph generation stage, visual similarity, which is defined as
the visual information of all 12 views of the query model, is combined with the contex-
tual similarity between the query and all models in the gallery pool for generating graph. In
graph fusion stage, the similar samples are further subdivided into the strong similar set and
the quasi-similar set based on the mining of top-k results. Moreover, in order to explore the
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hidden information of the ranking list, the ordinary samples are leveraged to offer the ordi-
nary set while the dissimilar set are mined according to the bottom-k dissimilar samples.
All samples will be reused for re-query to yield their new ranking list. In the final stage, the
ultimate list of the initial query model will be generated via aggregation. Compared to the
existing methods, the experimental results show the superiority of our proposed method on
three challenging 3D model datasets.
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